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(57) ABSTRACT

The present disclosure proposes a disk logging method con-
figured for an electronic device comprising a temporary non-
volatile storage medium to log data from a volatile memory to
said first storage medium, and the method includes the ele-
ments of aggregating data from applications of the electronic
device in a queue, transferring the aggregated data to a per
device queue targeted toward a native queue of the storage
medium, writing the data stored in the native queue of the
storage medium into a disk platter of the storage medium, and
transmitting an interrupt in response to the completion of the
writing of the data to the disk platter, wherein the first batch
size is dynamically adjusted such that the step of writing the
data to the platter takes more time than the step of transferring
the data from the per device queue to the native queue of the
storage medium.
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DISK LOGGING METHOD APPLICABLE TO
STORAGE MEDIUM AND ELECTRONIC
DEVICE, STORAGE MEDIUM USING THE
SAME AND ELECTRONIC DEVICE USING
THE SAME

CROSS REFERENCE TO RELATED
APPLICATION

This application claims the priority benefit of U.S.A. pro-
visional application Ser. No. 61/803,120, filed on Mar. 19,
2013. The entirety of the above-mentioned patent application
is hereby incorporated by reference herein and made a part of
specification.

TECHNICAL FIELD

The present disclosure relates to a disk logging method
configured for a temporary non-volatile storage medium to
log data from a volatile memory to said storage medium, and
the same method is configured for an electronic device having
said storage medium. The present disclosure also relates to a
non-transitory storage medium using the disk logging method
and an electronic device using the disk logging method.

BACKGROUND

A computer application would typically be store data in a
random access memory (RAM) for quick access as RAM is
much faster than a non volatile disk. However, if a system
which hosts the computer application crashes, the contents
stored in the RAM cannot be recovered as RAM is a volatile
form of memory. For many applications, such as writing
intensive applications, logging data stored in RAM to a form
of temporary but persistent memory or a logging disk has
been utilized so that if a system crash were to occur, a recover
process would be performed to restore data from the logging
disk to the volatile memory. The data logged to the logging
disk would then be transferred to the system’s normal disk
drive for permanent storage.

However, there has not been a universal consensus for the
best type of persistent memory used for logging disk. A flash
based memory such as Non-Volatile RAM (NVRAM) would
be considered expensive at this point in time while a hard disk
drive (HDD) as been generally dismissed as being slow and
unsuitable to be used as a logging disk. Phase Changing
Memory (PCM) could be a faster alternative to a flash based
memory but could not easily be adopted as a logging disk in
the near future because of the small density and high cost of
the PCM. Optimizing the latency and throughput of the disk
logging process has also not been a trivial task.

Throughput could be defined as the total number oflogging
operations, including readings and writings, completed by a
logging disk. Latency could be defined as the time between
when a logging request is received by a queue of a logging
disk and when the logging request is successfully written to
the logging disk platter and ready to be acknowledged to user
application. Latency and throughput would be two of the
parameters which a logging system would optimize as an
ideal disk logging system would have low latency and high
throughput. A perceived response time of a logging request to
a logging system would be dominated by the latency of a
logging operation and its associated operations.

Providing high throughput and low latency for logging
operations with small payloads such as 64 bytes or 128 bytes
are critical as many applications only need to log the infor-
mation associated with high-level operations, such as an
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update to a record in a B-tree page or a hash table bucket. The
size of the information is typically small. Low logging latency
is crucial because it directly impacts the user-perceived
response time, and because many applications would be
bound to the latency of the logging disk since more requests
cannot be processed unless previously submitted requests
have been completed.

However, it turns out that achieving both high throughput
and low latency for logging operations, especially for fine-
grained operations, is not at all trivial. Three key challenges
have been identified. First, there is a mismatch between fine-
grained logging and modern file systems. More concretely,
the file systems use 4 KB blocks as the basic units of reading
and writing, and hence logging a 64-byte or 128-byte record
to a log file may require a read of the log file’s last block as
well as a write of the same block after appending the log
record to it. Second, there are multiple processing steps on the
data path between the system call interface to the disk platter
that alogging operation’s payload needs to traverse, and some
of'these steps may incur a per-operation overhead. Therefore
that consecutive logging operation requests be properly
merged so as to effectively amortize these per-operation over-
heads and still rein in the average logging latency. Third, to
improve the raw data transfer capability of modern disks, it
would be a way to transform high-level logging operation
requests to low-level disk access requests for small data sizes
in such a way that would prevent the logging disks from
sitting idle most of the time.

Giventhese problems, existing techniques may not be fully
address all of these challenges. For instance, delayed writing
involving logging followed by an asynchronous write would
shift the bottleneck to the logging operation. If the logging
record size were assumed to be small, the underlying storage
has to manage high throughput with low latency in cases of
small random logging updates. Also many optimizing tech-
niques would involve having accurate control over disk
geometry details like rotational latency, seek latency, number
of'sectors in each track, zone coding, bad sectors mapping and
other finer details. At this point in time, it would seek a way to
implement ideas requiring these details because of the
advanced disk compaction techniques and some disk manu-
facturers no longer supply the inner details of disk layouts
because of complicated disk management techniques and
competitive market. Also it should be mentioned that disk
head prediction techniques could not easily be adopted since
it could be difficult with modern disk drives.

Another approach involve maintaining a map of used and
free blocks on disk in order to place the incoming data accu-
rately on an unoccupied block and at the same time avoid
track switch delay; However, maintaining mapping informa-
tion would render the logging scheme unnecessarily complex
and may require estimation of the geometry of the disk.

Also having alogging disk array using Redundant Array of
Independent Disks (RAID) technology to handle small writes
problem and NVRAM buffer to provide persistency to the
cache has been proposed. However, latency in writing to
NVRAM butfer is very low (in order of microseconds), and
flushing NVRAM bufter to disk is not a trivial task. Though
optimal size is chosen in units of stripe size, there are various
other factors which determine whether the disk is utilized to
the best extent. Another important factor to note is that
NVRAM is a costly hardware resource as already been men-
tioned. In many situations, writing to NVRAM can yield very
slow response times.

Another alternative could be to developed to handle small
buffer size writes. The entire file system is organized as a
sequential log which converts writes from user application
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and appends to the underlying log structure in the File Sys-
tem. But logging operations require persistent write to disk
and hence synchronous writes are required and would obvi-
ously yields a very low performance on a naive log structured
file system (LFS). Although modified techniques use
NVRAM or flash to make LFS handle synchronous writes
efficiently, both NVRAM and Flash are costly hardware alter-
natives. Though flash based disks provide high throughput
and low latency, erase cycles are slow and hence the perfor-
mance of the flash disk goes down when its utilization factor
goes up. Also, the basic block size of flash ranges from kilo-
bytes to megabytes and is much higher than the sector size of
typical magnetic hard disks. The erase operation in flash
devices requires the block size to be of bigger size to get
optimal results. However having a bigger block size increases
the latency of smaller requests which need to be aggregated to
form a bigger block size.

Based on the aforementioned reasons, an alternative to disk
logging would be proposed.

SUMMARY OF THE DISCLOSURE

The present disclosure proposes a disk logging method
configured for a temporary non-volatile storage medium to
log data from a volatile memory to said storage medium, and
the same method is configured for an electronic device having
said storage medium.

Accordingly, The present disclosure proposes a disk log-
ging method configured for a temporary non-volatile storage
medium to log data from a volatile memory to said storage
medium, and the method includes the elements of receiving a
first data having a first batch size from an external source and
storing the first data to an queue of the storage medium,
writing the first data to a disk platter of the storage medium,
and transmitting an interrupt in response to the completion of
the writing the first data to the external source, wherein the
first batch size is dynamically adjusted such that the step of
writing the first data takes more time than the step of receiving
and storing the first data.

The present disclosure proposes a disk logging method
configured for an electronic device containing elements
which includes at least but not limited to a first temporary
non-volatile storage medium to log data from a volatile
memory to said first storage medium, and the method
includes the elements of aggregating a first data from appli-
cations of the electronic device in a first queue, transferring
the first data of the first queue to a second queue of the first
storage medium, wherein the second queue is exclusively for
the first storage medium and a second data with a first batch
size is generated from the first data, transferring the second
data to a third queue which is native to the first storage
medium, writing the second data to a disk platter of the first
storage medium, and transmitting an interrupt in response to
the completion of the writing the second data to the first
queue, wherein the first batch size is dynamically adjusted
such that the step of writing the second data takes more time
than the step of transferring the second data to the third queue.

The present disclosure proposes a non-transitory storage
medium comprising a controller, wherein the controller is
configured for receiving a first data having a first batch size
from an external source and storing the first data to an queue
of the storage medium; writing the first data to a disk platter
of the storage medium; and transmitting an interrupt in
response to the completion of the writing the first data to the
external source, wherein the first batch size is dynamically
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adjusted such that the step of writing the first data takes more
time than or substantially the same time as the step of receiv-
ing and storing the first data.

The present disclosure proposes an electronic device for
disk logging comprising a first temporary non-volatile stor-
age medium to log data from a volatile memory to said first
storage medium, and the subsystem comprises a controller
configured for: aggregating a first data from applications of
the electronic device in a first queue; transferring the first data
of the first queue to a second queue of the first storage
medium, wherein the second queue is exclusively for the first
storage medium and a second data with a first batch size is
generated from the first data; transferring the second datato a
third queue which is native to the first storage medium; writ-
ing the second data to a disk platter of the first storage
medium; and transmitting an interrupt in response to the
completion of the writing the second data to the first queue,
wherein the first batch size is dynamically adjusted such that
the step of writing the second data takes more time than the
step of transferring the second data to the third queue.

In order to make the aforementioned features and advan-
tages of the present disclosure comprehensible, some
embodiments accompanied with figures are described in
detail below. It is to be understood that both the foregoing
general description and the following detailed description are
exemplary, and are intended to provide further explanation of
the disclosure as claimed.

It should be understood, however, that this summary may
not contain all of the aspect and embodiments of the present
disclosure and is therefore not meant to be limiting or restric-
tive in any manner. Also the present disclosure would include
improvements and modifications which are obvious to one
skilled in the art.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings are included to provide a
further understanding of the disclosure, and are incorporated
in and constitute a part of this specification.

The drawings illustrate embodiments of the disclosure and,
together with the description, serve to explain the principles
of the disclosure.

FIG. 1 illustrates the concept of disking logging in accor-
dance with the present disclosure.

FIG. 2 is atable which illustrates latency and throughput of
file based and raw disk logging using 512 bytes as the logging
operation request size.

FIG. 3 illustrates a toy train technique with consecutive
disk writes in accordance with one of the exemplary embodi-
ments of the present disclosure.

FIG. 4A illustrates a pipeline stage timing chart in accor-
dance with one of the exemplary embodiments of the present
disclosure.

FIG. 4B illustrates a four stage disk write pipeline in accor-
dance with one of the exemplary embodiments of the present
disclosure.

FIG. 5 illustrates disk logging in multiple disks in accor-
dance with one of the exemplary embodiments of the present
disclosure.

FIG. 6. illustrates using sentinel write requests in accor-
dance with one of the exemplary embodiments of the present
disclosure.

FIG. 7 illustrates submitting disk write requests in less slots
in accordance with one of the exemplary embodiments of the
present disclosure.
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FIG. 8 illustrates an example sentinel disk write request for
low power operation in accordance with one of the exemplary
embodiments of the present disclosure.

FIG. 9 illustrates using a hierarchy of different RPM disks
to enable sparse mode logging in accordance with one of the
exemplary embodiments of the present disclosure.

FIG. 10 illustrates sparse mode logging with less data
submitted in each merge record in accordance with one of the
exemplary embodiment of the present disclosure.

FIG. 11A~11D illustrates the performance measurement
of the method of the present disclosure.

FIG. 12 illustrates the method of disk logging from the
perspective of a logging disk in accordance with one of the
exemplary embodiments of the present disclosure.

FIG. 13 illustrates the method of disk logging from the
perspective of an electronic device in accordance with one of
the exemplary embodiments of the present disclosure.

FIG. 14 illustrates a storage medium using the method in
accordance with one of the exemplary embodiments of the
present disclosure.

FIG. 15 illustrates an electronic device using the method in
accordance with one of the exemplary embodiments of the
present disclosure.

DETAILED DESCRIPTION OF DISCLOSED
EMBODIMENTS

Reference will now be made in detail to the present
embodiments of the disclosure, examples of which are illus-
trated in the accompanying drawings. Wherever possible, the
same reference numbers are used in the drawings and the
description to refer to the same or like parts.

In view of the aforementioned challenges, a disk logging
system architecture featuring a floating logging operation
API that allows an application to perform a logging operation
without specifying the target address of the operation’s pay-
load has been proposed. The disk logging system streamlines
disk write pipeline which aims to aggregate logging operation
requests optimally and subsequently move aggregated opera-
tions through the pipeline in such a way that makes use of the
raw data transfer capability of a hard disk.

Therefore, present disclose proposes using a traditional
hard disk drive which is generally referred as ‘HDD’. HDD
could be a SATA disk or a SAS disk or a SCSI disk as long as
they all contain a platters and divided into sectors and tracks.
In other words, the present disclosure proposes taking advan-
tages of certain attributes of a HDD and using a HDD as the
logging disk. Although HDD has been considered by some to
be unsuitable for logging disks, preliminary measurements
on a fully operational set of three disks have shown that 1.2
million 256 byte logging operations per second with each
logging operation’s latency kept below 1 msec could be
accomplished. Moreover, even when logging operation
requests arrive sparsely, the present disclosure is still able to
achieve sub-msec logging operation latency. Although solid-
state disk (SSD) could be a promising technology for disk-
intensive workloads, it may not out necessarily be a better fit
than hard disks (HDD) for logging operations since main-
stream SSDs use multi-level cells, the per-cell write count
limit would be reduced to 10000, which may not fare well
with the write-intensive nature of logging operations. Also,
HDDs would command a significant per-byte cost advantage
over SSDs and would be more feasible to trade space for
performance by giving abundant space to each log device so
as to reduce the garbage collection overhead to the minimum.
Furthermore, for a HDD, there is no limitation on the number
of writes per sector, unlike a SSD.
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The present disclosure would be designed as a building
block for constructing high-level logging and recovery sub-
systems and would provide a cyclic persistent log device
which is large enough (tens of gigabytes) that FIFO-based
garbage collection would work adequately. That is, by the
time the logging process reaches the end of an application’s
log device or the end of the logging disk, log records in the
beginning of the log device would no longer be needed, and
thus the disk would be wrapped around in order to be logged
from the beginning. Data which have been written to a log
disk would also be written to a permanent storage disk but in
a delayed manner. Once the data is written to a permanent
disk, the data would no longer needed on log disk. By making
sure that a log disk is sufficiently large, the logged data would
also be put on the permanent disk by the time the log disk has
been written in all of its positions. Typically for a 1 Terabyte
(TB) logging disk, writing in all of its positions on the logging
disk would take around 3-4 hours assuming that the disk is
spun at 7200 RPM. And therefore, a subsequent asynchro-
nous write from a logging disk to a permanent storage would
typically occur in less than a few minutes after a data is
logged, and hence a HDD could be reused as a temporarily
persistent storage.

In should be noted that the logging device of the present
disclosure may not need to do garbage collection by the time
data is written to the last sector on last track as the data on first
sector on first track is assumed to be committed to the data
disk. The assumption would be valid for a large range of
applications which maintain an in-memory buffer and com-
mits the data to data disk within 3 hours. On a 1 TB disk for
example, it may take as long as 3 to 4 hours to make a
complete sweep of the logging disk. But for applications
which maintain large in-memory buffer, the time taken to
commit the data in in-memory buffer to data disk could be
longer than 3-4 hours. Hence a logging device may not afford
to erase some portions of a logging disk. Therefore, in another
exemplary embodiment, an archival disk for that purpose
would be proposed. This means that whenever the disk head
reaches to the end of the log disk, instead of wrapping around
to the first sector, first track on that log disk, a fresh new log
disk would be chosen for logging data. The completely writ-
ten log disk is then backed up to an archival storage and that
log disk is then made available for future logging operations.
Depending on the size of the in-memory buffer and the time
taken by the application to commit data to data disk, the
logging data in archival storage would be kept intact.

In terms of functionalities, at run time, the logging system
synchronously writes the payload of each logging operation
to a logging disk, and at recovery time, the logging system
recovers data from the active portion of the logging disk and
returns the data to the application. Also the present disclosure
would not need to interpret the payloads of retrieved log
records because the size and structure of each application-
specific log record would be completely opaque to the log-
ging system. Instead, the application’s recovery subsystem
would perform such interpretation on the log records returned
by the logging system. The higher level application would
need to determine what information to log such as metadata
updates or checkpoint summary and then utilizes the logging
system to log the information to disk.

FIG. 1 illustrates the concept of disking logging in accor-
dance with the present disclosure. A user application 101 may
generate data to be stored in a temporarily buffer queue 102,
which could be Cache memory or RAM. The buffer queue
102 would be volatile memory and would be erased when the
host system crashes or is unplugged. The embodiment of a
logging system 100 would use a logging disk 103 to provide
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persistent storage for data stored in the buffer queue 102 in a
way such that any data present in the buffer queue 102 would
be logged or synchronously copied to the logging disk 103.
As soon as data in the buffer queue 102 is logged in the
logging disk 103, the logged data would be transferred to the
data disk 104 for permanent storage as a background process.
The logging disk 103 as previously mentioned would be a
HDD disk.

FIG. 2 is atable which illustrates latency and throughput of
file based and raw disk logging using 512 bytes as the logging
operation request size. The numbers in FIG. 2 was obtained
by appending a payload to a log file, and the payload was
generated by a user level Linux application having the pay-
load size equals to 512 bytes. Based on the numbers of FIG.
2, it could be observed that a file system would worsen the
latency and throughput of the logging operation. The reasons
would be related to latency penalty due to extra data copying,
and also a file write system call could trigger multiple disk
1/0s because of accesses to the file system metadata. Bi-
passing the file system altogether using device based disk
logging or raw disk logging would increase the throughput
and decrease the latency. Therefore, it should be noted that the
present disclosure does not require a file system.

It could be observed that having 8 threads would not
increase the overall system performance, and also without
optimization, the average logging latency would still be quite
high. The source of the high latency would be the result of
consecutive logging operations which were issued synchro-
nously. More concretely, the N+1 th logging operation is
issued only after the N-th logging operation is completed.
This means that by the time the disk I/O for the N+1 thlogging
operation reaches the disk, it misses the its target sector and
needs to wait for a full rotation, which is roughly 8.3 msec for
a 7200 RPM disk drive.

One of the objectives of the present disclosure is to trans-
late the raw data transfer bandwidth of modern HDDs into a
high throughput and low latency for logging operations.
Therefore, toward this goal, a toy train disk logging opera-
tions would be proposed. The toy train technique would con-
stantly submit new disk write requests with consecutive target
disk addresses to the logging disk so as to keep the disk fully
occupied even in the absence of application level logging
operation requests. This proposed toy train model enable the
disk I/O software to have a tight grip of the disk head position
without requiring detailed knowledge of the internal struc-
tures and geometry of the disk. The disk write pipeline is
analogous to a toy train moving constantly around a closed
circuit with two stations with cargo loaded into the train in
one station and cargo offloading the train in the other station.
Even when there is no cargo on board, the train would still be
running around the circuit at full speed and never stops
assuming that train could load and unload cargos on the fly
without slowing down. The constant wear and tear of the disk
would be a non-issue since for a 2 TB disk, for example,
would be completely overwritten only 5 times per day, and it
would take 5 years to overwrite the disk 10,000 times.

FIG. 3 illustrates a toy train technique with consecutive
disk writes in accordance with one of the exemplary embodi-
ments of the present disclosure. Assuming that the user space
301 in the application level has generated five logging
requests labeled R1~R5 to be transferred synchronously to
the OS kernel 302, which would subsequently aggregate and
queue the logging requests (e.g. R3~R5). The disk controller
303 would then control the writing operation of the writing
requests on the disk platter 304. It is noted that the writing of
the data from the logging requests would be constant, and this
means that when a first data is written onto the disk platter 304
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in location 100, the next data must be ready to be written in
location 200. If assuming that next data would not be ready to
be written in 200 but in 220, the disk controller would lose the
timing of the write operation and consequently lose the con-
trol of the logging operation.

A conventional disk write request requires the disk head to
traverse to the exact user requests location on disk, and by
doing such would incur several types of latencies including
seek latency, rotation latency, and queuing latency. To avoid
these latencies, the write operation would need to be in
exactly where the disk head supposes to be by using accurate
disk geometry details, but predicting the exact disk geometry
details would be very difficult as current market vendor no
longer publish the necessary details. Therefore, the present
disclosure proposes that the data from user requests are writ-
ten on the disk platter 304 continuously such that the disk
head would not have to switch tracks and would not incur
unnecessary latencies.

For the example of FIG. 3, the proper operation in accor-
dance with the present disclosure would write data one after
the other. This would mean that when R1 is written in location
100, R2 must be ready to be written in location 200 while
R3~R5 would be waiting in a queue to be transferred to an
onboard queue of the logging disk.

Hence, efficient conversions would be the result of feeding
the disk with write requests with consecutive start addresses
in such a way that the on-disk controller 303 constantly puts
data onto the disk platters 304 nonstop. Disk drives that
support command queuing could service one request after
another without gaps between them. Most modern SATA
drives come with an efficient command queuing implemen-
tation called Native Command Queuing (NCQ) which would
provide optimization mechanisms including queuing disk
access commands in the disk drive to enable the on-disk
controller 303 to immediately service the next command in
the queue when the previous command is completed, batch-
ing and/or scheduling queued commands to reduce the num-
ber of commands that need to be serviced and the disk access
overhead, and supporting interrupt coalescing which aggre-
gates multiple completion interrupts and signals the host once
for them to reduce the total interrupt processing overhead.
Also by setting the NCQ queue length to 2, the on-disk
controller 303 would not be able to choose which writing
requests to write on the disk platter 304 except the one lined
up in the on-disk queue. Ifthere were no data generated by the
user space 201 at all after request R1 is written in location
100, the disk controller would coordinate a dummy data to be
written in location 200.

For example, writing continuous data would mean that if
data of R1 at location 100 is 32 kilobytes (KB), data of R2 at
location 200 would also be 32 (KB) with no empty space in
between 100 and 200. If there is no data ready to be written,
the on-disk controller 303 would insert a dummy data at 200,
and the size of the dummy data would be 32 kB. Therefore,
unlike existing techniques, the method of the present disclo-
sure would not need to know the exact disk geometry details
like sectors per track, zone boundaries, RPM, angular speed,
etc. The method of the present disclosure would feed the
logging disk with write requests with consecutive start
addresses such that the on-disk controller would constantly
put data onto the disk platters nonstop and hence the write
pipeline would be accurately positioned to predict the disk
head movement to finer accuracy.

One of the optimization goals of the present disclosure
would be to convert as much as possible a disk’s raw data
transfer rate into a proportionally high I/O rate, such as turn-
ing a byte rate of 100 Mbytes/sec into an I/O rate of 100000 1
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KB-writes per second. The present disclosure proposes that
the throughput in terms of megabytes per second (MBPS)
would equal to input/output per second (IOPS) multiplied by
the /O Request Size (Throughput (MBPS)=IOPS*I/O
Request Size). In other words, in order to maintain a constant
throughput, IOPS should increase proportionally to the
decrease in the 1/0 request size. But it is not as obvious as it
seems to be for small [/O request sizes as considerable
amount of metadata work is done for small I/O requests sizes,
and thus using small I/O request sizes would yield a very low
throughput. Also blindly merging the I/O requests does not
help in achieving a high throughput as a large /O request
sizes would result in high latency.

FIG. 4A illustrates a four stage disk write pipeline in accor-
dance with one of the exemplary embodiments of the present
disclosure. FIG. 4B illustrates a pipeline stage timing chart in
accordance with one of the exemplary embodiments of the
present disclosure. As mentioned previously, the keys to
maximize the logging operation rate would include properly
batching incoming logging operation requests to balance
between latency and data transport efficiency and constantly
moving data to the disk platter. To embody these two ideas, a
four-stage pipeline to process fixed-sized disk write requests
would be proposed.

In the first stage (Accumulate, S451), incoming logging
requests 401 from high-level logging operations would be
inserted in the aggregate queue 402 of a host memory (e.g.
FIG. 1 element 102) and be aggregated into low-level disk
write requests to be stored in a per device kernel request queue
403. In the second stage (Submit, S452), aggregated disk
write requests would be copied from the kernel request queue
403 of host memory (102) to the on-disk queue 404 managed
by the NCQ. In the third stage (Transfer, S453), the payload of
a queued disk write request (e.g. 404a) would be transferred
to its associated location on the disk platter of a HDD (405).
In the fourth stage (Complete, S454), the disk would deliver
a completion interrupt (S455) to the host for every completed
disk write request, which in turn may trigger additional pro-
cessing on the host to complete each high-level logging
operation associated with the completed disk write request. In
this pipeline design, the on-disk controller would take care of
the second half of the Submit (S452) stage, the Transfer stage
(S453) and the first half of the Complete stage (S454), and the
rest would be fully controlled by the host software. Because
the on-disk controller is opaque to the host software, the cycle
time of this pipeline would be mainly determined by the
Transfer stage (S453). Since the time taken by the Transfer
stage (S453) would depend on the size of the disk write
request’s payload, a design issue would involve determining
the optimal disk write request size so that time taken in the
four stages in this pipeline are balanced.

When the payload of the N-th disk write request would be
fully transferred to the disk platter of the HDD 405, the
on-disk controller of the HDD 405 may start the transfer of
the N+1-th request’s payload to the disk platter, and may send
a completion interrupt to the host, which would arrange a
DMA to move the payload of the N+2-th request’s payload
into the disk. If the N+2-th request’s payload does not reach
the disk in time, i.e., before the transfer of the N+1-request’s
payload is done, the on-disk controller won’t be able to trans-
fer the N+2-th request’s payload immediately after complet-
ing the transfer of the N+1-th request’s payload, thus wasting
a full rotation delay. To avoid a full rotation delay, the critical
path including the interrupt generation on the disk and the
interrupt processing on the host and the payload DMA would
be minimized. To minimize the interrupt generation time,
NCQ’s interrupt coalescing could be disabled. To minimize
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the impact of the interrupt processing time, the host software
could schedule the payload DMA as soon as possible after
receiving the hardware interrupt.

Although the raw data rate of modern PCle bus (Gen2 or
Gen3) is higher than that of the disk transfer bandwidth, the
granularity of each disk write request would be sufficiently
high to amortize the non-trivial fixed overhead that each PCle
bus transaction would incur. Because NCQ itself could also
batch and schedule disk write requests in the on-disk queue, it
could potentially increase the time taken by the Transfer stage
(S453) by batching adjacent requests, or destroy the sequen-
tially of requests serviced consecutively because of its rota-
tion delay-aware scheduling. Suppose there are five 64-KB
disk write requests in the on-disk queue, it is possible that
NCQ’s scheduling logic may choose to service the fifth
request after servicing the first request because the fifth
request is closer to the first request than the second request.
However, since doing so would disrupt the pipeline, the
present disclosure may preserve the command queuing
mechanism of the NCQ and do away with the other mecha-
nisms.

A low-level disk write request contained in the per device
kernel request queue 403 could have a constant fixed batch
size until the batch size is re-adjusted. The granularity or the
batch size for each low-level disk write request moving
through the pipeline would affect the performance of the
logging system. If a batch size is too small, the time to submit
a disk write request from the host memory to the on-disk
queue would be longer than the time required to transfer the
write request from on-disk queue to the disk platter because of
the non-trivial per transaction overhead required in each write
request. By the time the disk write request reaches the disk,
the immediately previous disk write is already done, and the
disk write request misses its target sector and is thus delayed
by a full rotation cycle. When the batch size is too high, each
disk write request would experience a higher queuing delay in
the accumulation queue, and the transfer time would also be
higher and consequently the average logging latency would
be higher.

When the batch size is just right, the Submit stage (S452)
time would be smaller than the Transfer stage (S453) time so
that none of the disk write requests would experience a full
rotation delay. In this way, the ideal batch size would be the
smallest batch size that enables the Submit stage (S452) time
to be smaller than the transfer stage time (S453). The effective
pipeline time would be the Transfer stage (S453) time since it
would likely be the slowest stage of the pipeline given the
optimum batch size. Assuming that is the case and the Submit
stage (s452) is nearly the same as the Transfer stage (S453)
time, the average logging latency would be minimized. A
batch size could be determined based on automated trial and
error. In particular, a high level write request could be gener-
ated with a particular batch size, and then the latency of the
write request could be measured. A different batch size could
then be used based on the result of the measurement and thus
the batch size could be fine-tuned by trying different batch
sizes.

For the operation of the method, there could be two differ-
ent operating modes. One would be ‘dense-mode’ logging, in
which high-level logging operations arrive at the logging
subsystem at a rate equal to its maximum throughput, and the
other would be ‘sparse-mode’ logging, in which high-level
logging operations arrive at the logging subsystem slower
than its maximum throughput. A goal for dense-mode logging
would be for both high logging throughput as well as low
logging latency, whereas a goal for sparse-mode logging
would mostly be low logging latency. For the dense mode,
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after receiving high-level logging operations, the high-level
logging operations would be queued in the memory buffer of
the host, and then the high-level operations would be batched
into low-level aggregated disk write requests of an optimal
size. Then when a completion interrupt arrives, another lower
level disk write request would be submitted to an on-board
queue of the logging disk to be managed by the NCQ. The
merging and scheduling functionalities of the operation sys-
tem would be disabled so that the buffering and batching
would proceed according to the streamlined disk write pipe-
line design. To turn on the scheduling functionalities of NCQ,
the NCQ queue length could be set to 2, so that the on-disk
controller would not have more than one choice at a time. This
streamlined disk write pipeline would be designed to move
fixed-sized data payload in a lock-step fashion, similar to a
CPU pipeline, so as to fully exploit the disk’s raw data trans-
fer capability and effectively convert its data transfer rate
(Mbytes/sec) into the commensurate I/O rate (I/Os/sec).

According to the present disclosure, the target logical
block address of an aggregated disk write request is deter-
mined only at the point when it is dispatched. Late address
binding is provided when multiple physical disks are used in
the disk logging system, where the relative timing for request
completion among these disks could vary due to run-time
conditions and thus is not fully deterministic. Accordingly,
the target logical block address of each high-level logging
operation would also determined mostly only when its asso-
ciated aggregated disk write request is dispatched. After a
disk write request is completed, the completion signal would
be demultiplexed to the logging operations that compose the
disk write request by invoking their corresponding post-
completion request completion logic. The latency of a log-
ging operation would the time interval between when the
logging operation enters the system memory buffer and when
the post completion processing of the logging operation is
finished.

To jump-start the proposed streamlined disk write pipeline,
back to back two disk write requests would be issued to the
disk to fill up the Transfer and Submit stage, and then holds
off the third disk write request until the completion interrupt
of'the first disk write request arrives. After that, a new aggre-
gated disk write request would be fed to the pipeline after an
existing disk write request exits the pipeline.

For the case of multiple logging disks, it could be accom-
plished by allocating a separate per-device request queue for
each individual disk. FIG. 5 illustrates disk logging in mul-
tiple disks in accordance with one of the exemplary embodi-
ments of the present disclosure. For multiple disks such as
diskl 502, disk2 503, or more, the Accumulate stage (S451) is
centralized and the aggregate queue 501 would be shared
among multiple logging disks such as diskl 502 and disk2
503. This means that when incoming high-level logging
operations are aggregated into low-level disk write requests
for all logging disks in the aggregate queue 501, and as soon
as a completion interrupt (S512 or S514) from a logging disk
(502 or 503) would come, an aggregated disk write request
(S511 or SS13) to a particular logging disk would be submit-
ted in order to avoid contention among logging disks. The
logging disks could be jump-started in a staggered fashion to
prevent unwanted synchronization among them. The optimal
batch size for a disk write pipeline on a server could depend
on its PCle bus and disk interface (SATA, SAS or SCSI)
which affect the Submit stage (S452) time, and the RPM
rating of the disk, which affects the Transfer stage (S453)
time. Because the Transfer stage (S453) time for a disk write
request of a certain size may vary depending on where its
target address lies on the disk surface, the optimal batch size
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of'a disk write pipeline could change as the pipeline traverses
different parts of the disk surface. For example, the first batch
size is dynamically adjusted such that the first batch size in the
outer track of the storage medium is larger than the first batch
size in the inner track of the storage medium. Moreover,
because outermost tracks (closer to track 0) have higher sec-
tor density than innermost tracks, the data transfer rate of the
former would be higher than the latter’s. Therefore, the opti-
mal batch size would be expected to change as the target
addresses traverses in different parts of the disk surface.

Essentially, for the dense mode, the NCQ would be main-
tain at 2 so that one request would always be ready in the
native disk controller queue (NCQ) to be served, as soon as
the disk head would finish writing a request to the disk platter.
Also through a few trial and errors, the optimal batch size
could be obtained such that the time taken in the pipeline for
all 4 stages (S451~S454) would be balanced.

An implicit assumption underlying the streamlined disk
write pipeline is that there would be an infinite stream of disk
write requests that are waiting to fill the pipeline. This
assumption could be valid for dense mode logging but does
not hold for sparse-mode logging. More concretely, if a log-
ging operation request appears after a period of inactivity, this
logging operation request may enter the disk write pipeline
alone and therefore cannot benefit from any disk head posi-
tion information that may be gleaned from neighboring
requests, as is the case in dense-mode logging. As a conse-
quence, the average latency of such logging operation
requests would be high, since it could be difficult to ensure
that the target address assigned to a sparse-mode logging
operation request is close to the disk head position at the time
when the request is submitted. Constantly predicting the disk
head position and using the prediction to derive a target logi-
cal block address for each sparse-mode logging operation
could be unfeasible as modern disks become more and more
complicated, this approach becomes less and less effective,
because the internal control mechanisms inside disk drives,
such as NCQ, on-disk caching, interrupt coalescing, etc., tend
to obscure disk head movement and thus get in the way of disk
head position prediction.

Therefore, the method of the present disclosure leverages
its dense-mode logging architecture to implement sparse-
mode logging. More concretely, when the application level no
longer generates logging requests, dummy aggregated disk
write requests would constantly be filled in the aggregated
buffer, and the subsequently the dummy aggregated disk
write requests would be written along with real logging
requests in order to write to the logging disk constantly. Also,
whenever an application-level logging operation request has
been received, the logging request could be aggregated with
dummy disk write requests in the aggregated disk queue.
When the next disk completion interrupt comes, this disk
write request would be dispatched as usual. In other words,
disk write pipeline would constantly be busy either with real
disk write requests accumulated from application-level log-
ging operation requests or with dummy disk write requests,
but some of the dummy disk write requests may contain
high-level logging operations issued by applications.

Having the disk write pipeline driven by events such as
request completion interrupts rather than by a hardware clock
could make the logging system self-adaptive to the timing
variations of the disk write pipeline as the timing experienced
by each disk write request may vary. However, by keeping the
disk write pipeline full with dummy write requests, all the
timing variations due to firmware, software or hardware
would automatically accounted for and thus removed from
the implementation complexity of sparse-mode disk logging.
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The additional power consumption associated with dummy
disk write requests would be addressed in the following dis-
closure.

Assuming that the logging system continuously dispatches
disk write request of size S whose target addresses are S apart,
where S corresponds to the batch size. There could be two
possible approaches to reduce the power consumption due to
the unnecessary dummy writes. One approach as illustrated in
FIG. 6. would be to submit the same sequence of disk write
requests in the same way as in the dense mode but instead
submit a sentinel write request which means to decrease the
size of each submitted disk write request to just one disk
sector (512 bytes) when there are no pending logging opera-
tion requests. This way, the number of bytes written to disk
could be reduced by one to two orders of magnitude when
there are no pending logging operation requests. In other
words, if a batch size containing real data is 32 kB, a disk
write operation would write the entire 32 kB on the disk. But
if the disk write operation is for a dummy write containing no
real data, the disk write operation would write only 512 bytes.
In FIGS. 6, T1, T2, and T3 would be dummy writes of 512
bytes in size if there is no logging request. A logging request
could be aggregated with real or dummy data and submitted
to be written to disk but targeted to piggyback an earlier
issued sentinel request. In other words, a write request des-
tined for T3 could be written in T2 instead of T3.

A second approach to conserve energy would be to issue
only 1 out of every N disk write requests as in the dense mode.
FIG. 7 illustrates submitting disk write requests in less slots in
accordance with one of the exemplary embodiments of the
present disclosure. A dense mode setup would have specific
time slots for when merged records have to be submitted to
disk. By submitting one request out of every N slot, this would
save energy for not writing N-1 slots. In this way, the number
of bytes written to disk would be reduced by a factor of N
when there are no pending logging operation requests. For
example, referring to FIG. 7 which illustrates only 1 out of
every two slots are submitted, by not writing in R200 and
R400, energy consumption could be reduced to half.

Unfortunately it would not be straightforward to imple-
ment these ideas because the on disk scheduler merges and
re-orders requests which are not well coordinated. To get
around the request merging mechanism, the target address of
each submitted disk write request could be set at, for example,
1 millisecond (ms) away from the disk head position at the
time when it arrives on the disk. This would prevent each
submitted disk write request from experiencing a full rotation
delay. To get around the on-disk request scheduler, the effec-
tive number of active requests in the NCQ queue could be
limited to 4, and this would ensure that the effective number
of active requests would be sufficiently far apart. Taking into
account these constraints, a low-power version of sparse
mode disk logging could be implemented as follows.

Assuming that a sequence of sentinel disk write requests
would be dispatched to the logging disk regardless of whether
applications issue any logging operation requests. When the
N-th sentinel request is completed, the low-power operation
would issue the N+2-th sentinel request. The distance
between the target addresses of consecutive sentinel requests
would be D sectors, where the time it takes for the disk head
to pass D sectors would be at least 1 msec. Suppose the target
address of a sentinel request is Sector T, then all application-
issued logging operation requests that arrive between the time
when the disk head passes Sector T-M-D and the time when
the disk head passes Sector T-M would be aggregated into one
disk write request that is to be merged with this sentinel
request. The interval marked by these two time points would
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be the feasible interval associated with this sentinel request.
M would stand for an empirical safety margin in the following
sense—If a new request is to be merged with an existing
sentinel request without disrupting the service order, the new
request would arrive at the disk at least M sectors before the
disk head passes the existing request’s target address. The
size of each sentinel request would be 4 KB because this is the
minimum size for a request which could be merged. This
low-power operation not only dispatches fewer disk write
requests than the regular operation with straight forward
dummy writes or full operation but also keeps each request
smaller than those in full operation or dense mode.

FIG. 8 illustrates an example sentinel disk write request for
low power operation in accordance with one of the exemplary
embodiments of the present disclosure. FIG. 8 shows an
example schedule of sentinel requests in low-power Beluga,
where D is 250 and M is 100. The target addresses of the
sentinel requests would assume to be sector 250, 500, 750,
1000, 1250, 1500, etc. The sentinel request with the target
address Sector 750 would be dispatched when the request
with the target address Sector 250 is completed, or about 500
sectors before it is serviced. It could take more than 1 msec for
the disk head to fly over 500 sectors. In addition, at most two
sentinel requests could be in the on-disk queue at a time. For
this sentinel request (spanning Sector 750 to 757), all appli-
cation-issued logging operation requests that arrive between
the time when the disk head passes Sector 400 and the time
when the disk head passes Sector 650 are aggregated into one
disk write request whose target address is Sector 758 and
submitted to the disk when the disk head passes Sector 650. If
there would be no application-issued logging operation
requests, the number of bytes written in low power operate
could be 8 sectors every 250 sectors, or roughly Y40 of that of
full operation.

FIG. 9 illustrates using a hierarchy of different RPM disks
to enable sparse mode logging in accordance with one of the
exemplary embodiments of the present disclosure. Another
viable alternative for the low power operation in sparse mode
logging would be to use a hierarchy of different RPM disks.
Since the energy consumption in a hard disk is directly pro-
portional to how fast a disk rotates, employing lower RPM
disks saves energy at the cost of lesser throughput. For fasting
logging in dense mode, the 15000 RPM disk in FIG. 9 could
be used. However in sparse mode logging, throughput is no
longer an important criteria, guaranteeing lower latency
would remain a higher priority. Therefore, energy could be
saved by using lesser RPM disks such as the 5400 RPM disks.
The performance with optimal energy consumption could be
further optimized by completely switching off disks that are
rarely used so that energy due to rotation could also be saved.

FIG. 10 illustrates sparse mode logging with less data
submitted in each merge record in accordance with one of the
exemplary embodiment of the present disclosure. Energy
could be saved due to unwanted dense mode writing by intel-
ligently submitting lesser data in each merged record to the
underlying disk in every write operation. By writing the first
sector for every N sectors in a merged record or by writing the
last sector for every N sectors in a merged record when the
logging disk system is configured for sparse mode logging,
logging requests would be expected to arrive at a rate slower
than the maximum throughput of the underlying disk(s). In
other words, data could either be written for first few sectors
1001 or for last few sectors 1002 in a merged record. Either
approach helps writing lesser data while maintaining the disk
write pipeline intact. The amount of data to be written could
be chosen dynamically, proportional to the logging request
ingest rate to save energy spent on writing data to disk.
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FIG. 11A~11D illustrates the performance measurement
of the method of the present disclosure. FIG. 11A shows the
average logging latency when data is written at different
offsets on the disk while the logging operation request size is
256 bytes. FIG. 11B shows that the latency and throughput of
256 bytes logging operation when their log records are writ-
ten to different parts of the disk using different batch size.
Since the optimal batch size for different parts of a disk is
could be different, an adaptive batch size selection mecha-
nism would choose the optimal batch size according to the
current disk head position. The adaptive batch size selection
mechanism is able to keep the average logging latency below
1 ms throughout the entire disk, whereas using a fixed batch
size (e.g. 32 kB) could lead to an increase in the average
logging latency by more than 70% when the disk head reach
the center of the disk platters. FIG. 11C shows that the aver-
age logging latency remains steady and the throughput dras-
tically increases when the number of disks increases from 1 to
3 while the logging operation request size is 256 bytes. FIG.
11D shows a throughput of 1.2 million IOPS for 256 bytes
logging operations while end to end latency is under 1 ms for
each logging operation. These numbers are the best numbers
reported at this point in time. The significance of the 1.2
million TOPS is that on a 7200 RPM disk, 100 MBPS would
be the raw sequential bandwidth. However, converting 100
MBPS, which is 100,000 KBPS into 400,000 256 byte opera-
tions per second is not a trivial task. By using 3 logging disks
in the presented disclosure, the IOPS would scale linearly and
delivers 3*400 K 256 byte requests/second=1.2 million 256
byte records/second.

FIG. 12 illustrates the method of disk logging from the
perspective of a logging disk in accordance with one of the
exemplary embodiments of the present disclosure. It would
be assumed that the exemplary method would be configured
for a temporary non-volatile storage medium such as a HDD
in order to log data from a volatile memory such as Cache or
RAM to said storage medium. The method is as follows. In
step S1201, the storage medium receives a first data having a
first batch size from an external source and storing the first
data to an queue of the storage medium. In step S1202, the
storage medium writes the first data to a disk platter of the
storage medium. In step S1203, the storage medium transmits
an interrupt in response to the completion of the writing the
first data to the external source. It should be noted that the first
batch size is dynamically adjusted such that the step of writ-
ing the first data takes more time than the step of receiving and
storing the first data.

FIG. 13 illustrates the method of disk logging from the
perspective of an electronic device in accordance with one of
the exemplary embodiments of the present disclosure. It
would be assumed that the electronic device has at least but
not limited to a processor and controller complex configured
to execute the method of the present disclosure, one or more
temporary non-volatile storage mediums such as HDDs to log
data from a volatile memory such as RAM or cache to said
storage medium, and the method is proposed as follows. In
step S1301, the electronic device aggregates a first data from
applications of the electronic device in a (global) queue. In
step S1302, the electronic device transfers the first data of the
(global) queue to a per device queue of one of the storage
mediums, wherein the per device queue is specifically for the
targeted storage medium, and a second data with a certain
batch size is generated from the first data. In step S1303, the
second data would be transferred to an on board queue which
is native to the target storage medium. In step S1304, the
second data would be written to a disk platter of the targeted
storage medium. In S1305, the disk controller of storage
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medium would generate an interrupt in response to the
completion of the writing the second data to the electronic
device, wherein the first batch size is dynamically adjusted
such that the step of writing the second data takes more time
than the step of transferring the second data to the third queue.

FIG. 14 illustrates a storage medium 1401 having a con-
troller 1402, and the controller 1402 is configured for receiv-
ing a first data having a first batch size from an external source
and storing the first data to an queue of the storage medium,
writing the first data to a disk platter of the storage medium,
and transmitting an interrupt in response to the completion of
the writing the first data to the external source, wherein the
first batch size is dynamically adjusted such that the step of
writing the first data takes more time than or substantially the
same time as the step of receiving and storing the first data.

FIG. 15 illustrates an electronic device 1500 (i.e. a disk
logging subsystem) comprising a first temporary non-volatile
storage medium 1503 to log data from a volatile memory
1501 to said first storage medium 1503, and the electronic
device also comprises a controller 1502 configured for aggre-
gating a first data from applications of the electronic device in
a first queue; transferring the first data of the first queue to a
second queue of the first storage medium 1503, wherein the
second queue is exclusively for the first storage medium 1503
and a second data with a first batch size is generated from the
first data; transferring the second data to a third queue which
is native to the first storage medium 1503; writing the second
data to a disk platter of the first storage medium 1503; and
transmitting an interrupt in response to the completion of the
writing the second data to the first queue, wherein the first
batch size is dynamically adjusted such that the step of writ-
ing the second data takes more time than the step of transfer-
ring the second data to the third queue.

Also it should be noted that from the hardware perspective,
the storage medium could be a typical hard disk drive (HDD)
which is configured to execute the method of the present
disclosure. The HDD would store digital data on a rotating
platter coated with magnetic material and would use a mag-
netic head disposed on a moving actuator arm to read and
write data on the rotating platter. The hard disk drive would
also contain elements including at least but not limited to an
onboard controller/processor, buffer memory, and I/O ports.

No element, act, or instruction used in the detailed descrip-
tion of disclosed embodiments of the present application
should be construed as absolutely critical or essential to the
present disclosure unless explicitly described as such. Also,
as used herein, each of the indefinite articles “a” and “an”
could include more than one item. If only one item is
intended, the terms “a single” or similar languages would be
used. Furthermore, the terms “any of” followed by a listing of
aplurality of items and/or a plurality of categories of items, as
used herein, are intended to include “any of”, “any combina-
tion of”, “any multiple of”, and/or “any combination of”
multiples of the items and/or the categories of items, indi-
vidually or in conjunction with other items and/or other cat-
egories of items. Further, as used herein, the term “set” is
intended to include any number of items, including zero.
Further, as used herein, the term “number” is intended to
include any number, including zero.

It will be apparent to those skilled in the art that various
modifications and variations can be made to the structure of
the disclosed embodiments without departing from the scope
or spirit of the disclosure. In view of the foregoing, it is
intended that the disclosure cover modifications and varia-
tions of this disclosure provided they fall within the scope of
the following claims and their equivalents.
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Moreover, the claims should not be read as limited to the
described order or elements unless stated to that effect. In
addition, use of the term “means” in any claim is intended to
invoke 35 U.S.C. §112, 96, and any claim without the word
“means” is not so intended.

What is claimed is:

1. A disk logging method configured for a temporary non-
volatile storage medium to log data from a volatile memory to
said storage medium, and the method comprising:

receiving a first data having a first batch size from an

external source and storing the first data to an queue of
the storage medium;

writing the first data to a disk platter of the storage medium;

and

transmitting an interrupt in response to completion of the

writing the first data to the external source, wherein the
first batch size is dynamically adjusted such that the step
of writing the first data takes more time than or substan-
tially the same time as the step of receiving and storing
the first data.

2. The method of claim 1, wherein said storage medium is
ahard disk drive (HDD) which stores digital data on a rotating
platter coated with magnetic material and uses a magnetic
head disposed on a moving actuator arm to read and write data
on the rotating platter.

3. The method of claim 2, wherein the storage medium
writes data to the disk platter constantly from a first sector of
afirsttrack of the storage medium to alast sector of a last track
of the storage medium without ceasing.

4. The method of claim 3 further comprising:

transferring the first data to a permanent storage before the

storage medium writes to the last sector of the last track.

5. The method of claim 3 further comprising the storage
medium writes data to the disk platter constantly from the first
sector of the first track of the storage medium to the last sector
of'the last track of the storage medium without empty sectors
in between.

6. The method of claim 3 further comprising the storage
medium writes data to the disk platter constantly from the first
sector of the first track of the storage medium to the last sector
of'the last track of the storage medium without knowing exact
geometry details of the storage medium.

7. The method of claim 1, wherein only in response to the
transmitting the interrupt, the storage medium receives the
first data having the first batch size from the external source
and stores the first data into the queue of the storage medium.

8. The method of claim 1, wherein the first batch size is
dynamically adjusted further comprises the first batch size is
dynamically adjusted such that the step of writing the first
data takes substantially the same time as the step of receiving
and storing the first data.

9. The method of claim 1, wherein the first batch size is
dynamically adjusted such that the first batch size in an outer
track of the storage medium is larger than the first batch size
in an inner track of the storage medium.

10. The method of claim 9, wherein the storage medium
maintains a constant throughput which is determined based
onatotal number of input and output per second multiplied by
the dynamically adjusted first batch size.

11. The method of claim 1 wherein the steps of claim 1 are
not managed by any file system of an operation system.

12. The method of claim 1, wherein the queue of the tem-
porary non-volatile storage medium is managed by Native
Command Queuing (NCQ).

13. The method of claim 12, wherein the NCQ is set to 2
when the storage medium receiving from the external source
a constant stream of application driven data.
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14. The method of claim 1, wherein the first data comprises
a dummy data which is not application driven.

15. The method of claim 14, wherein the writing the first
data to the disk platter is only one sector.

16. The method of claim 14, the first data further comprises
application driven data together with the dummy data.

17. The method of claim 14, wherein the queue of the
temporary non-volatile storage medium is managed by
Native Command Queuing (NCQ) is set to a value equal or
greater than 2.

18. The method of claim 14, the storage medium carries out
1 write request out of every N write slots, where N is an
integer greater than 1.

19. The method of claim 14, wherein the storage medium
writes a first sector for every n sectors in a merged record or
write alast sector for every nsectors in a merged record where
n is an integer greater than 1.

20. The method of claim 1, wherein the storage medium
belongs to a disk array managed by a global queue which
aggregates data for the external source.

21. A non-transitory storage medium comprising a control-
ler, wherein the controller is configured for

receiving a first data having a first batch size from an

external source and storing the first data to an queue of
the storage medium;

writing the first data to a disk platter of the storage medium;

and

transmitting an interrupt in response to completion of the

writing the first data to the external source, wherein the
first batch size is dynamically adjusted such that the step
of writing the first data takes more time than or substan-
tially the same time as the step of receiving and storing
the first data.

22. The storage medium of claim 21, wherein the storage
medium is a hard disk drive (HDD) which stores digital data
on a rotating platter coated with magnetic material and uses a
magnetic head disposed on a moving actuator arm to read and
write data on the rotating platter.

23. A disk logging method configured for an electronic
device comprising a first temporary non-volatile storage
medium to log data from a volatile memory to said first
storage medium, and the method comprising:

aggregating a first data from applications of the electronic

device in a first queue;

transferring the first data of the first queue to a second

queue of the first storage medium, wherein the second
queue is exclusively for the first storage medium and a
second data with a first batch size is generated from the
first data;

transferring the second data to a third queue which is native

to the first storage medium;

writing the second data to a disk platter of the first storage

medium; and

transmitting an interrupt in response to completion of the

writing the second data to the first queue, wherein the
first batch size is dynamically adjusted such that the step
of writing the second data takes more time than the step
of transferring the second data to the third queue.

24. The method of claim 23, wherein the first storage
medium is a hard disk drive (HDD) which stores digital data
on a rotating platter coated with magnetic material and uses a
magnetic head disposed on a moving actuator arm to read and
write data on the rotating platter.

25. The method of claim 24, wherein the first storage
medium writes data to the disk platter constantly from a first
sector of a first track of the storage medium to a last sector of
a last track of the storage medium without ceasing.
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26. The method of claim 25 further comprising:

transferring the second data to a permanent storage before

the storage medium writes to the last sector of the last
track.

27. The method of claim 25 further comprising the first
storage medium writes data to the disk platter constantly from
the first sector of the first track of the storage medium to the
last sector of the last track of the first storage medium without
empty sectors in between.

28. The method of claim 25 further comprising the first
storage medium writes data to the disk platter constantly from
the first sector of the first track of the first storage medium to
the last sector of the last track of the first storage medium
without knowing exact geometry details of the first storage
medium.

29. The method of claim 23, wherein only in response to
the transmitting the interrupt, the first storage medium
receives the second data and stores the second data in the third
queue of the first storage medium.

30. The method of claim 29, wherein the steps of claim 23
are not managed by any file system of an operation system of
the electronic device.

31. The method of claim 23, wherein the first batch size is
dynamically adjusted further comprises the first batch size is
dynamically adjusted such that the step of writing the second
data takes substantially the same time as the step of transfer-
ring the second data to the third queue.

32. The method of claim 23, wherein the first batch size is
dynamically adjusted such that the first batch size in an outer
track of the first storage medium is larger than the first batch
size in an inner track of the first storage medium.

33. The method of claim 32, wherein the first storage
medium maintains a constant throughput which is determined
based on a total number of input and output per second mul-
tiplied by the dynamically adjusted first batch size.

34. The method of claim 23, wherein the third queue of the
first storage medium is managed by Native Command Queu-
ing (NCQ).

35. The method of claim 34, wherein the NCQ is set to 2
when the first storage medium receiving from the external
source a constant stream of application driven data.

36. The method of claim 23, wherein the first queue com-
prises a dummy data which is not application driven.
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37. The method of claim 36, wherein the writing the second
data to the disk platter is only one sector.

38. The method of claim 36, the second data further com-
prises application driven data together with the dummy data.

39. The method of claim 36, wherein the queue of the
temporary non-volatile storage medium is managed by
Native Command Queuing (NCQ) is set to a value equal or
greater than 2.

40. The method of claim 36, the first storage medium
carries out 1 write request out of every N write slots, where N
is an integer greater than 1.

41. The method of claim 36, wherein the first storage
medium writes the first sector for every n sectors in a merged
record or write the last sector for every n sectors in a merged
record where n is an integer greater than 1.

42. The method of claim 36, wherein the electronic device
further comprises a second storage medium which spins are a
different speed from the first storage medium, wherein the
first storage medium and the second storage medium are
electrically coupled to the first queue.

43. The method of claim 42, wherein the electronic device
selects the first storage medium or the second storage medium
based on quantity of application driven data.

44. An electronic device comprising a first temporary non-
volatile storage medium to log data from a volatile memory to
said first storage medium, and the device comprises a con-
troller configured for:

aggregating a first data from applications of the electronic

device in a first queue;

transferring the first data of the first queue to a second

queue of the first storage medium, wherein the second
queue is exclusively for the first storage medium and a
second data with a first batch size is generated from the
first data;

transferring the second data to a third queue which is native

to the first storage medium;

writing the second data to a disk platter of the first storage

medium; and

transmitting an interrupt in response to completion of the

writing the second data to the first queue, wherein the
first batch size is dynamically adjusted such that the step
of writing the second data takes more time than the step
of transferring the second data to the third queue.
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